A wikipedia of Dr. D'Adamo's research

Showing revision 4

Homeobox (Hox) Gene


See Also

  • [Digit ratio]?


A homeobox (or homoeobox) is a DNA sequence found within genes that are involved in the regulation of development (morphogenesis) of animals, fungi and plants. Genes that have a homeobox are called homeobox genes and form the homeobox gene family.

A homeobox is about 180 base pairs long; it encodes a protein domain (the homeodomain) which can bind DNA. Homeobox genes encode transcription factors which typically switch on cascades of other genes, for instance all the ones needed to make a leg. The homeodomain binds DNA in a specific manner. However, the specificity of a single homeodomain protein is usually not enough to recognize only its desired target genes. Most of the time, homeodomain proteins act in the promoter region of their target genes as complexes with other transcription factors, often also homeodomain proteins. Such complexes have a much higher target specificity than a single homeodomain protein.

A particular subgroup of homeobox genes are the Hox genes, which are found in a special gene cluster, the Hox cluster (also called Hox complex). Hox genes function in patterning the body axis. Thus, by providing the identity of particular body regions, Hox genes determine where limbs and other body segments will grow in a developing fetus or larva. Mutations in any one of these genes can lead to the growth of extra, typically non-functional body parts in invertebrates, for example aristapedia complex in Drosophila, which results in a leg growing from the head in place of an antenna and is due to a defect in a single gene (this mutation is also known as Antennapedia). Mutation in vertebrate Hox genes usually results in spontaneous abortion.

The homeobox genes were first found in the fruit fly Drosophila melanogaster and have subsequently been identified in many other species, from insects to reptiles and mammals. The diagram to the right is a structural model of the Rattus norvegicus Pit-1 homeobox-containing protein (purple) bound to DNA. Pit-1 is a regulator of growth hormone gene transcription. Pit-1 is a member of the POU DNA-binding domain family of transcription factors so it can bind to DNA using both the POU domain and the homeodomain. Homeobox genes have even been found in fungi, for example the one-cellular yeasts, and plants. The well known homeotic genes in plants (MADS-box genes) are not homologous to Hox genes in animals. Plants and animals do not share the same homeotic genes, and this suggests that homeotic genes were evolved once in the early evolution of animals and once again in the early evolution of plants.

Mutations to homeobox genes can produce easily visible phenotypic changes. Two examples of homeobox mutations in the above-mentioned fruit fly are legs where the antennae should be, and a second pair of wings. Duplication of homeobox genes can produce new body segments, and such duplications are likely to have been important in the evolution of segmented animals. Interestingly, there is one insect family, the xyelid sawflies, in which both the antennae and mouthparts are remarkably leg-like in structure.


Hox genes: Hox genes are a subgroup of homeobox genes. In vertebrates these genes are found in gene clusters on the chromosomes. In mammals four such clusters exist, called Hox clusters. The gene name "Hox" has been restricted to name Hox cluster genes in vertebrates. Only genes in the HOX cluster should be named Hox genes. So note: homeobox genes are NOT Hox genes, Hox genes are a subset of homeobox genes.

HOX cluster: The term Hox cluster refers to a group of clustered homeobox genes, named Hox genes in vertebrates, that play important roles in pattern formation along the anterior-posterior body axis. In fact, the first homeobox genes discovered where those of the Drosophila homeotic gene clusters, i.e. the "Antennapedia complex" and the "Bithorax complex", which summarily are referred to as HOM-C (homeotic complex). This HOM-C complex in Drosophila is the evolutionary homolog of the vertebrate Hox clusters and the evolutionarily related homeobox gene clusters in other animals (i.e. chordates, insects, nematodes, etc.) are now also called HOX clusters.

homeodomain: a DNA-binding domain, usually about 60 amino acids in length, encoded by the homeobox.

homeobox: a fragment of DNA of about 180 basepairs (not counting introns), found in homeobox genes.





The Complete Blood Type Encyclopedia is the essential desk reference for Dr. D'Adamo's work. This is the first book to draw on the thousands of medical studies proving the connection between blood type and disease.

Click to learn more

Click the Play button to hear to Dr. Peter J. D'Adamo discuss .

The statements made on our websites have not been evaluated by the FDA (U.S. Food & Drug Administration).
Our products and services are not intended to diagnose, cure or prevent any disease. If a condition persists, please contact your physician.
Copyright © 2015-2020, Hoop-A-Joop, LLC, Inc. All Rights Reserved.     Log In